搜索
搜索
img
资讯中心
您所在的当前位置:
首页
>
>
>
《Small》:纳米粒子自组装形态的非极性溶剂调制喷墨打印

《Small》:纳米粒子自组装形态的非极性溶剂调制喷墨打印

  • 分类:行业动态
  • 发布时间:2023-08-24 17:09
  • 访问量:

【概要描述】

《Small》:纳米粒子自组装形态的非极性溶剂调制喷墨打印

【概要描述】

  • 分类:行业动态
  • 发布时间:2023-08-24 17:09
  • 访问量:
详情

2023年5月16日,北京工业大学物理与光电工程系的研究人员在《Small》上发表题为Nonpolar Solvent Modulated Inkjet Printing of Nanoparticle Self-Assembly Morphologies的研究论文,报道了高分辨率且形状可控的多色纳米颗粒沉积的喷墨打印。

原文链接:

https://doi.org/10.1002/smll.202208161 

  研究简介  

发光纳米材料的图形化在显示和信息加密等领域具有重要意义,喷墨打印技术以其快速、大规模和集成化的特点在许多领域显示出独特优势。然而,从非极性溶剂液滴中喷墨打印具有高分辨率和形状结构可控的纳米颗粒沉积仍是个难题。本文提出了一种非极性溶剂调制喷墨打印纳米粒子自组装图案的简便方法,该方法由液滴收缩和内部溶质对流驱动。通过调节溶剂组成和纳米粒子浓度,实现了形态可调的多色发光上转换纳米粒子自组装微阵列,表现出可设计的微尺度形态和光致发光的多模态防伪集成。
此外,通过控制墨滴的聚结和干燥,实现了纳米颗粒自组装连续线的喷墨打印。实现了高分辨率的喷墨打印微阵列和宽度小于5微米和10微米的连续线。这种非极性溶剂调制的纳米颗粒沉积喷墨打印方法促进了不同纳米材料的图像化和集成,并有望为制造应用于光子集成、微型LED和近场显示的先进设备提供一个通用策略。

喷墨打印多芯光的方案框图。

图1 三种UCNPs的形态和发光特性。

图2 不同形态的UCNPs自组装的溶剂工程。

图3 相图和形成的典型显微组织的表征。

图4 由可设计的微阵列和发光特性组成的上转换发光模式。

图5 具有可调宽度和形态的纳米颗粒自组装连续线的溶剂调制喷墨打印。

  研究结论  

团队通过研究纳米颗粒在固体基材上可收缩的非极性溶剂液滴中的自组装,实现了具有可调形貌的多色纳米颗粒沉积的喷墨打印。重点解决了喷墨打印UCNP镀层的形态控制问题,并对具有可编程形态和发光光谱的像素进行编码,该像素可用于防伪。
此外还通过控制墨滴的聚结和干燥来证明纳米颗粒自组装线的可调性。通过调节溶剂组成和纳米颗粒浓度,实现了< 5 um的高分辨率微阵列和宽度< 10 um的连续谱线。这种溶剂调制的高分辨率纳米颗粒沉积喷墨打印促进了不同纳米材料的图案和集成,并有望在光电子集成、微型LED和近场显示领域提供新方法。

——END——

关键词:

扫二维码用手机看

更多资讯

行业新知 | 《Journal of Manufacturing Processes》通过数字光处理3D打印玻璃非球面透镜
行业新知 | 《Journal of Manufacturing Processes》通过数字光处理3D打印玻璃非球面透镜
行业新知 近日,精密光学工程研究中心Yaguo Li带领的团队在《Journal of Manufacturing Processes》发表了题为3D printing of glass aspheric lens by digital light processing的研究,通过数字光处理(DLP)技术3D打印厘米级玻璃非球面透镜,使用紫外光固化树脂和二氧化硅纳米颗粒浆液。旋转涂层后处理减少层状结构。 原文链接:www.elsevier.com/locate/manpro 奇遇科技官网:http://www.adventuretech.cn/ 如无法打开,请拷贝网址到浏览器查阅。   研究内容 熔融石英玻璃因其优异的光学性能和耐热耐化学性广泛应用,但其高脆性和低断裂韧性使加工困难。传统方法如研磨和抛光效率低,成本高。精密玻璃成型(PGM)和化学蚀刻存在材料去除率低、加工成本高的问题。3D打印技术如FDM、TPP、STL和DLP提供了制造复杂玻璃结构的灵活性和高分辨率,但存在打印速度慢、层状结构明显等局限。虽然有改进方法减少层状结构,但3D打印厘米级玻璃光学器件仍面临挑战。 本研究提出了一种结合DLP和后固化工艺的3D打印玻璃非球面透镜方法。使用由有机树脂和二氧化硅纳米颗粒组成的玻璃浆料进行打印,并通过旋涂和后固化减少层状结构。最终通过加热处理实现脱脂和烧结,生成玻璃透镜。实验评估了打印透镜的光学性能和制造精度。 △图1,(a)一种玻璃非球面透镜的3D打印过程。将由二氧化硅纳米颗粒和紫外光固化单体预混料组成的玻璃浆液均质化,用作DLP打印机的3D打印材料。为了减少层状结构,印刷镜头在其表面旋转涂覆未聚合的浆液后进行了一个后固化步骤。随后,聚合样品通过热脱带和烧结过程转化为玻璃。(b)设计的非球面透镜经过优化,波长为532 nm,焦距为168 mm,半径为10.5 mm。基于设计的镜头建立了STL格式模型,放大以补偿脱层和烧结造成的收缩。 △图2,Aerosil OX50 的 SEM 显微照片。 △图3,采用平行板流变仪测定预混料和玻璃浆料的粘度,平行板之间的间隙分别为10μm、20μm、50μm和1 mm。预混料在固液界面处几乎表现出牛顿流体性质,在不同间隙处粘度基本一致。在10μm和20μm间隙处,粘度随剪切速率的增加而显著波动。 △图4,脱层、烧结后的印刷样品及其微观结构。 △图5,用不同固体负载的玻璃浆打印的烧结样品,随着固体负载的增加,收缩率减小。 △图6,XRD结果显示,没有明显的窄峰和峰值,表明在烧结过程中没有结晶。 △图7,(a)测量打印透镜上2个区域的表面粗糙度分别为14 nm和15 nm。(b)显示了打印镜头的表面轮廓,与设计的曲线相比。打印表面的最大偏差为170μm。 △图8,(a)分辨率测试的实验装置。(b)参考透镜(第4-5组)的目标图像显示的成像分辨率为90.5lp/mm。(c)打印透镜的目标图像(第4-5组)的成像分辨率为45.3lp/mm。   研究结论 本文介绍了一种使用纳米颗粒和有机树脂玻璃浆料通过DLP 3D打印厘米级非球面玻璃镜片的方法。通过后固化工艺减少分层结构,脱脂和烧结实现透明玻璃组件。玻璃浆料流变特性优化打印参数,获得光滑表面(RMS < 15 nm),但成像分辨率受限于45.3 lp/mm。结果表明DLP结合后固化能制造高透射率和低表面粗糙度的玻璃镜片,制造精度有待提高。
了解详细
行业新知 |《Journal of the European Ceramic Society》DIW打印多级孔结构硼酸铝陶瓷
行业新知 |《Journal of the European Ceramic Society》DIW打印多级孔结构硼酸铝陶瓷
近日,南京航空航天大学材料科学与技术学院贾文宝教授团队在《Journal of the European Ceramic Society》上发表题为Novel ceramic supports for catalyst with hierarchical pore structures fabricated via additive manufacturing-direct ink writing的研究论文,使用直接墨水书写技术,与原位生长的晶须相结合,促进了3D打印陶瓷催化剂载体-硼酸铝多孔陶瓷(ABPCs)的发展。   原文链接: https://www.sciencedirect.com/science/article/abs/pii/S0955221924002887   奇遇科技官网: http://www.adventuretech.cn/ 如无法打开,请拷贝网址到浏览器查阅。    研究背景 多孔陶瓷具有孔隙率高、化学性质稳定、比表面积大、体积密度小、导热性低以及耐高温耐腐蚀等优良性能,在冶金、生物、能源、环保等领域有着众多应用。其制备方法主要有发泡造孔法、溶胶-凝胶法、增材制造法以及乳液或泡沫模板法。在这些方法中,增材制造被认为是制造复杂几何形状多孔陶瓷的理想方法。 图文解析 在本研究中,我们采用原位反应和DIW相结合的方法制备了具有高阶孔结构的硼酸铝品须多孔陶瓷。通过调节分散剂、增稠剂用量、pH值、水的添加量等因素,优化浆料的流变性,特别是粘弹性。其次,利用流场模型研究了打印参数和浆料流变性对打印预成型结构的影响。对ABPCs的相组成、微观结构、容重、表观孔隙常和力学性能进行了详细的讨论。然后系统研究了ABPCs的比表面积和孔径分布。重要的是,ABPCs作为高性能催化剂载体的潜力得到了证明。 在直接墨水书写技术中,油墨的特性至关重要,油墨的均匀分布对打印样品的质量和精度影响很大。图1展示了分散剂(FS20)用量对油墨粘度的影响。将添加FS20的料浆与不添加FS20的油墨进行比较,可以明显看出前者的粘度明显降低,随着FS20的添加量从0.1wt%增加到0.4wt%,油墨的粘度先降低后升高,在FS20添加量为0.2wt%时达到最低粘度。这是因为适量的FS20可以吸附在粉末颗粒表面,增强油墨中颗粒之间的静电相互作用和空间斥力。这促进了分散并降低了粘度。然而,过量的FS20会导致油墨中FS20的官能团之间形成电刷状结构,导致粘度增加。   图1 分散剂(FS20)用量对油墨粘度的影响 图2显示了在不同温度下烧结后ABPCs细丝的表观形貌。由图可知,其表面存在大量的晶须,可以认为是硼酸铝晶须,随着烧结温度的升高,硼酸铝的晶粒尺寸逐渐增大,说明较高的烧结温度促进了硼酸铝晶粒的长大。另外,当烧结温度从1000℃升高到1100℃时,硼酸铝晶须的长度也随之增加,晶须的形貌为针状,进一步提高烧结温度,硼酸铝晶须均匀长大,形成较大的柱状晶,晶须的长径比随烧结温度的升高而减小。       图2 不同温度下ABPCs细丝烧结后的SEM图像 图3显示了在不同温度下烧结后ABPCs细丝的孔径分布。据观察,所有的ABPCs样品,在不同的温度下烧结,均表现出分级孔结构。随着烧结温度的升高,ABPCs细丝的中值孔径(体积)增加。当烧结温度为1000℃或1100℃时,主要由亚微米级的孔隙组成,在1200℃以上,主要由微米级的孔组成,随着烧结温度的升高,亚微米级孔的比例逐渐减小,而微米级孔的比例逐渐增大。   图3 在不同温度下烧结后ABPCs的孔径分布     研究结论 本研究探索了一种以硼酸铝为载体,采用原位生长晶须的方法制备新型催化剂陶瓷载体的新方法。DIW 3D打印工艺允许产生大孔,而原位晶须有助于在挤出的细丝上形成亚微米或微米级的孔。
了解详细
奇遇科技
可进行留言
可进行留言

版权所有 2021 深圳奇遇科技有限公司  粤ICP备16050384号   网站建设:中企动力 深圳