09-11
行业新知 | 《Journal of Manufacturing Processes》通过数字光处理3D打印玻璃非球面透镜
行业新知
近日,精密光学工程研究中心Yaguo Li带领的团队在《Journal of Manufacturing Processes》发表了题为3D printing of glass aspheric lens by digital light processing的研究,通过数字光处理(DLP)技术3D打印厘米级玻璃非球面透镜,使用紫外光固化树脂和二氧化硅纳米颗粒浆液。旋转涂层后处理减少层状结构。
原文链接:www.elsevier.com/locate/manpro
奇遇科技官网:http://www.adventuretech.cn/
如无法打开,请拷贝网址到浏览器查阅。
研究内容
熔融石英玻璃因其优异的光学性能和耐热耐化学性广泛应用,但其高脆性和低断裂韧性使加工困难。传统方法如研磨和抛光效率低,成本高。精密玻璃成型(PGM)和化学蚀刻存在材料去除率低、加工成本高的问题。3D打印技术如FDM、TPP、STL和DLP提供了制造复杂玻璃结构的灵活性和高分辨率,但存在打印速度慢、层状结构明显等局限。虽然有改进方法减少层状结构,但3D打印厘米级玻璃光学器件仍面临挑战。
本研究提出了一种结合DLP和后固化工艺的3D打印玻璃非球面透镜方法。使用由有机树脂和二氧化硅纳米颗粒组成的玻璃浆料进行打印,并通过旋涂和后固化减少层状结构。最终通过加热处理实现脱脂和烧结,生成玻璃透镜。实验评估了打印透镜的光学性能和制造精度。
△图1,(a)一种玻璃非球面透镜的3D打印过程。将由二氧化硅纳米颗粒和紫外光固化单体预混料组成的玻璃浆液均质化,用作DLP打印机的3D打印材料。为了减少层状结构,印刷镜头在其表面旋转涂覆未聚合的浆液后进行了一个后固化步骤。随后,聚合样品通过热脱带和烧结过程转化为玻璃。(b)设计的非球面透镜经过优化,波长为532 nm,焦距为168 mm,半径为10.5 mm。基于设计的镜头建立了STL格式模型,放大以补偿脱层和烧结造成的收缩。
△图2,Aerosil OX50 的 SEM 显微照片。
△图3,采用平行板流变仪测定预混料和玻璃浆料的粘度,平行板之间的间隙分别为10μm、20μm、50μm和1 mm。预混料在固液界面处几乎表现出牛顿流体性质,在不同间隙处粘度基本一致。在10μm和20μm间隙处,粘度随剪切速率的增加而显著波动。
△图4,脱层、烧结后的印刷样品及其微观结构。
△图5,用不同固体负载的玻璃浆打印的烧结样品,随着固体负载的增加,收缩率减小。
△图6,XRD结果显示,没有明显的窄峰和峰值,表明在烧结过程中没有结晶。
△图7,(a)测量打印透镜上2个区域的表面粗糙度分别为14 nm和15 nm。(b)显示了打印镜头的表面轮廓,与设计的曲线相比。打印表面的最大偏差为170μm。
△图8,(a)分辨率测试的实验装置。(b)参考透镜(第4-5组)的目标图像显示的成像分辨率为90.5lp/mm。(c)打印透镜的目标图像(第4-5组)的成像分辨率为45.3lp/mm。
研究结论
本文介绍了一种使用纳米颗粒和有机树脂玻璃浆料通过DLP 3D打印厘米级非球面玻璃镜片的方法。通过后固化工艺减少分层结构,脱脂和烧结实现透明玻璃组件。玻璃浆料流变特性优化打印参数,获得光滑表面(RMS < 15 nm),但成像分辨率受限于45.3 lp/mm。结果表明DLP结合后固化能制造高透射率和低表面粗糙度的玻璃镜片,制造精度有待提高。